Classifying Imbalanced Data Sets by a Novel RE-Sample and Cost-Sensitive Stacked Generalization Method

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel ensemble method for classifying imbalanced data

The class imbalance problems have been reported to severely hinder classification performance of many standard learning algorithms, and have attracted a great deal of attention from researchers of different fields. Therefore, a number of methods, such as sampling methods, cost-sensitive learning methods, and bagging and boosting based ensemble methods, have been proposed to solve these problems...

متن کامل

Proposing a Novel Cost Sensitive Imbalanced Classification Method based on Hybrid of New Fuzzy Cost Assigning Approaches, Fuzzy Clustering and Evolutionary Algorithms

In this paper, a new hybrid methodology is introduced to design a cost-sensitive fuzzy rule-based classification system. A novel cost metric is proposed based on the combination of three different concepts: Entropy, Gini index and DKM criterion. In order to calculate the effective cost of patterns, a hybrid of fuzzy c-means clustering and particle swarm optimization algorithm is utilized. This ...

متن کامل

Sample Subset Optimization for Classifying Imbalanced Biological Data

Data in many biological problems are often compounded by imbalanced class distribution. That is, the positive examples may largely outnumbered by the negative examples. Many classification algorithms such as support vector machine (SVM) are sensitive to data with imbalanced class distribution, and result in a suboptimal classification. It is desirable to compensate the imbalance effect in model...

متن کامل

Classifying imbalanced data sets using similarity based hierarchical decomposition

Classification of data is difficult if the data is imbalanced and classes are overlapping. In recent years, more research has started to focus on classification of imbalanced data since real world data is often skewed. Traditional methods are more successful with classifying the class that has the most samples (majority class) compared to the other classes (minority classes). For the classifica...

متن کامل

Classifying Severely Imbalanced Data

Learning from data with severe class imbalance is difficult. Established solutions include: under-sampling, adjusting classification threshold, and using an ensemble. We examine the performance of combining these solutions to balance the sensitivity and specificity for binary classifications, and to reduce the MSE score for probability estimation.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Problems in Engineering

سال: 2018

ISSN: 1024-123X,1563-5147

DOI: 10.1155/2018/5036710